
CGI 2008 Conference Proceedings manuscript No.
(will be inserted by the editor)

Joost van Dongen

Interior Mapping
A new technique for rendering realistic buildings

Keywords interior · GPU shader · architecture
Abstract Interior Mapping is a new real-time shader
technique that renders the interior of a building when
looking at it from the outside, without the need to actu-
ally model or store this interior. With Interior Mapping,
raycasting in the pixel shader is used to calculate the
positions of floors and walls behind the windows. Build-
ings are modelled in the same way as without Interior
Mapping and are rendered on the GPU. The number
of rooms rendered does not influence the framerate or
memory usage. The rooms are lit and textured and can
have furniture and animated characters. The interiors
require very little additional asset creation and no extra
memory. Interior Mapping is especially useful for adding
more depth and detail to buildings in games and other
applications that are situated in large virtual cities.

1 Introduction

Many new games and virtual worlds feature large cities
through which the player can move; take for example
games like the Grand Theft Auto-series, Crackdown and
Superman Returns: The Video Game, and the use of vir-
tual 3D cities in online communities, simulations and vir-
tual tourism. For a significant part, the graphical quality
of these games is determined by how the buildings are
rendered. These can have a certain amount of polygonal
detail, depending on the desired size of the city and the
dynamic loading system used, but the aforementioned
applications all have in common that the cities are too
large to model detailed buildings using geometry and still
achieve interactive framerates while doing so. To deal
with this, this paper introduces a new technique that
significantly increases the graphical quality of buildings
in real-time applications.

Utrecht University and Ronimo Games
E-mail: joost@ronimo-games.com

Fig. 1 Buildings with their interiors rendered with Interior
Mapping. The geometry of the buildings consists of simple
cubes only. Note how the interiors are textured and drawn
perspectively correct.

Throughout the years, many techniques have been
developed and used to visualise buildings as realistically
and detailled as possible while still keeping framerates in-
teractive. Geometry is often kept relatively simple, while
details are added through the use of textures [4]. Orig-
inally, textures were only used to change the colours of
surface elements. When adding details, this tends to look
as if pictures of details have been glued on to a flat sur-
face, instead of as if the details are really there. One
technique that deals with the shading of details is bump
mapping [1]. Unlike in the case of standard textures,
with bump mapping, details are correctly lit with re-
spect to the lighting in the scene. This can be extended



2 Joost van Dongen

through horizon mapping [12], to show the shadows of
these details. In addition to bump mapping, normal map-
ping [7] is also often used, which stores the normals of
each texture element, instead of their height. All the
aforementioned techniques have in common that they do
not correctly visualise the parallax effect when perspec-
tive changes. Displacement mapping [15] fixes this by
rendering height-field surface details perspectively cor-
rect.

The texturing techniques mentioned above can be
used to add details to buildings. There is also a num-
ber of techniques that have been developed specifically
to quickly render more distant buildings and objects, as
they are smaller in view and can thus be simplified. Dis-
playing simpler geometry through level of detail [6] and
lower resolution textures through mipmaps [18] are com-
monly used techniques for this. More rigorous is replac-
ing distant objects by imposters [11] or turning complete
groups of buildings into single blocks with height field
shapes inside, which are rendered through the use of an
extension to displacement mapping called block maps [5].
This way, hardly any polygons are needed, while rela-
tively complex shapes can still be rendered with reduced
detail.

None of the techniques above makes it possible to
render the interiors of buildings. However, interiors are
important for the graphical quality of a virtual city, as its
buildings contain many windows through which interiors
should be visible. But as interiors are often not required
for gameplay, they are usually left out entirely, except
in those instances where the interior can be entered by
the player (see for example Grand Theft Auto). Adding
the interiors of many buildings would require an enor-
mous amount of polygons, which is not feasible when in-
teractive framerates are required. Therefore, some other
solution is required to render windows. Two simple tech-
niques are used in most games and interactive applica-
tions today: either windows are fully reflective, not al-
lowing a look inside, or some details very close to the
window are drawn into the diffuse texture and the rest
of the interior is left black.

One way to add perspectively correct interiors would
be through the use of displacement mapping. If the dis-
placement map is calculated separately from the exte-
rior texture, then it could handle geometrically correct
rooms. However, because displacement maps do not sup-
port texturing on surfaces that are perpendicular to the
original polygonal surface, this would leave all walls with
stretched coloured lines, except for the back wall, which
could still use a real texture.

To fix this, textures can be added to all the walls of
the interior through the use of indices from the displace-
ment map into an extra texture, as is done with block
maps [5]. Block maps cannot render furniture or charac-
ters inside the room, though, because they are limited
to height field geometry. Also, if the viewer watches a
room at the corner of a building, she would see a dif-

ferent room through the windows on the different walls.
This would be awkward, as it should in fact be the same
room, only seen through different windows. Finally, to
vary the textures on the walls per room, knowledge of
which wall is being rendered would be required and is
not readily available with block maps.

Another technique that could render interiors, is gen-
eralised displacement mapping [17]. This technique could
render interiors of any complexity, but has a number
of drawbacks that make it ultimately unsuitable. The
most important problem is that generalised displacement
maps use too much memory. After heavy compression, a
map with a resolution of 128x128 pixels still requires 4mb
of memory, while a standard texture of the same dimen-
sion, as can be used with Interior Mapping, requires only
48kb of memory, or 8kb if DXT1 texture compression [2]
is used. Also, with generalized displacement mapping it
is not possible to separately animate a single character
or object in the interior and walls cannot be varied in-
dependently of each other.

To deal with the problem of rendering the interiors of
buildings, in this paper, Interior Mapping is introduced.
This new technique solves the aforementioned issues with
block maps and generalised displacement maps by di-
rectly rendering virtual walls through raycasting. The
Interior Mapping algorithm knows which wall in which
room it is rendering and can use this information to vary
lighting and textures per room. Furniture and characters
can be added through the use of furniture planes.

An added benefit of Interior Mapping is that it can
easily be coupled with procedurally generated buildings,
like in [13] and [19]. Most procedural city and building
generation systems do not take interiors into account.
Interior Mapping could easily be added to the buildings
that these systems generate and works well even with
buildings that have curved walls.

Although Interior Mapping is a technique that ren-
ders actual interiors, it does not need to model or store
them in geometry. The walls of the rooms of the inte-
rior only exist as virtual geometry in the shader. For
each pixel, the ray from the camera to the point on the
building that is being rendered is intersected with the
walls of the interior. Because the interior walls are reg-
ularly spaced, the ray can be collided in constant time,
regardless of the number of rooms in a building or the
number of buildings. Because it is shader-based, it is easy
to turn Interior Mapping off for level of detail or lower
quality rendering on older GPUs. Models do not need
to be changed to make Interior Mapping possible, so the
effect can quickly be added to cities that have already
been created or are near completion.

Because the raycasting is done for each individual
pixel that is rendered and takes the camera direction into
account, the result is that perspectively correct rooms
are rendered inside the building when looking at it from
the outside. This can then be combined with a texture
that stores where windows are, so that the interiors are



Interior Mapping 3

only visible through the windows. By blending the inte-
rior’s colour with a reflection map, both the interior and
the reflections in the windows can be shown. See figure 1
for an example of what can be achieved using Interior
Mapping. Note that the buildings here are modelled as
single blocks.

Interior Mapping uses ray casting on the GPU, a re-
search field that has quickly evolved since the introduc-
tion of programmable shaders. Here, a major trend is
to turn the GPU into a full raytrace renderer [3], which
means that the rasterizing functionality of the GPU is
worked around to create a renderer that utilises the vec-
tor processing power of the GPU, but does not use the
GPU’s approach to rendering. Contrary to this approach
however, Interior Mapping does not seek to replace ras-
terised GPU rendering, but actually to enhance it. Thus,
it is more closely connected to techniques like displace-
ment mapping and papers on topics like ambient occlu-
sion [16]. Nonetheless, using the regularity of internal
structures in the way that Interior Mapping does, does
seem to be a novelty among existing GPU raycasting
techniques.

Interior Mapping can be implemented in such a way,
that the number of shader instructions is small enough to
be able to calculate the effect within the 64 instructions
allowed in pixel shader model 2.0 [10], and also add a
diffuse and reflection map in the same pass. More effects
can be added to the basic algorithm to create additional
details.

The remainder of this paper is structured as follows:
section 2 explains how Interior Mapping works. Section
3 analyses the performance of Interior Mapping and sec-
tion 4 looks into a number of extensions to the basic
technique.

2 The algorithm

For ease of understanding, the simplest case is considered
first: only ceilings and floors are being rendered. Walls,
lighting and exterior textures will be added later.

2.1 Ceilings

For the Interior Mapping algorithm, the 3D space is con-
sidered to have ceilings at regular distances. Each ceiling
is an infinite plane parallel to the XZ-plane. Intersecting
a ray with a horizontal plane is a very simple thing to do,
but the main point to Interior Mapping is to calculate
efficiently which plane to use for a particular pixel.

When the pixel shader renders a pixel of a polygon
to the screen, this pixel also has a position in the 3D
world. This position is calculated in object space and the
position of the camera is transformed into object space as
well. When handling a ray from the camera to this pixel
with a camera that is tilted upwards, the ceiling just

Fig. 2 Visualisation in 2D of the variables in the formula
above.

above the pixel needs to be found. This can be done by
taking the ceiling-function of the y-position of the pixel,
divided by the distance d between ceilings. Afterwards,
the height that has been found should be multiplied with
d again to get the actual height of the ceiling. In Cg, this
simply comes down to ceil(y/d) · d. When the camera is
tilted downwards, the ceiling (or actually the floor) that
is one position lower must be used, so in that case the
height is at (ceil(y/d) − 1) · d.

Now that the height of the ceiling is known, the ray
from the camera to the pixel can be intersected with the
ceiling to find the position where the ray hits the ceiling.
This is visualised in figure 2.

The result is the position of the intersection, but what
is needed is a colour for the pixel. This can easily be
obtained by using the x- and z-coordinates of the inter-
section as the uv-coordinates for a texture read for the
ceiling or the floor. To scale the texture to the desired
size, the coordinates can be multiplied by some constant.

By performing all the calculations in object space,
the walls can be rotated by rotating the space of the
object itself. This way the walls in different buildings do
not have to be parallel.

Note that an exactly horizontal ray will result in a
division by zero. However, GPUs do not crash on this and
the visual artefacts this results in are so rare in practice
that this problem is negligible.

2.2 Walls

So far only horizontal planes have been considered. How-
ever, real interiors do not only have floors and ceilings,
but also walls. These can be added by using exactly the
same calculations as were used for the ceilings, but now
with XY- and YZ-planes, instead of XZ-planes. The in-
tersection of the ray is thus calculated with three differ-
ent planes.

Of the resulting three intersections, the one closest
to the camera will be used. To be able to use different
textures for the ceilings, floors and walls, the texture
corresponding to the closest intersecting plane is used.



4 Joost van Dongen

Fig. 3 The result of calculating ceilings, floors and walls with
Interior Mapping. The geometry of this building consists of a
single cube, as is shown in the wireframe image of the same
building to the right.

Fig. 4 Interior Mapping applied to a sphere and a cylinder.

This allows for different textures to be used for walls
and ceilings, as can be seen in figure 3. The interior thus
calculated works with curved geometry as well, as is ex-
emplified in figure 4.

2.3 Combining with exterior textures

The basic Interior Mapping algorithm is now complete,
but usually, it will be combined with a texture for the
exterior of the building. This can be done by creating a
diffuse texture that uses the alpha channel to store where
windows are. If the alpha-value is 1, then the diffuse
texture will be used; if it is 0, the colour calculated by
the Interior Mapping algorithm will be used. This can
be further refined by adding a reflection to the windows.
The colour of the reflection will then be combined with
the colour from the Interior Mapping, as can be seen in
figure 5.

2.4 Furniture and animated characters

So far, the rooms in the interior have been completely
empty. This works well when looking from a larger dis-
tance, but adding furniture and even animated charac-
ters to the interior would greatly improve their liveliness.

Fig. 5 Interior Mapping combined with an exterior texture
and a reflection map. The reflection is made very subtle here
to emphasise the effect of the Interior Mapping.

Fig. 6 The furniture plane is parallel to the actual surface of
the object. The ray from the camera is intersected with both
the furniture plane and the interior planes. In this example,
the intersection of the ray with the furniture plane is closer
than the intersection of the ray with the interior wall, so the
furniture plane is visible.

Adding actual geometry to the interior is not possible
without raycasting against large numbers of objects, so
a different solution is needed here.

A technique that can add details inside the rooms is
to add an extra plane that is parallel to the surface of
the building, but displaced a fixed distance to the inside.
Here, this plane is called the “furniture plane”. The fur-
niture plane does not actually exist in the geometry and
is defined in the pixel shader. It is intersected with the
ray from the camera to the pixel and if the intersection is
closer than any of the intersections of the interior walls,
then the furniture is shown.

The furniture plane is intended to show things like
furniture and characters, not to be a solid wall inside
the building. Therefore, the alpha channel of the texture
that is used for the furniture plane determines whether
the colour of the furniture plane is discarded or not. This
way, an object can be seen standing in the middle of a
room, as if it were a billboard or sprite inside the build-
ing.

By using an animated texture, the objects on the
furniture plane can actually move. Animated textures
usually require a lot of storage, so only short animations



Interior Mapping 5

Fig. 7 An example of characters inside a room, made with
a furniture plane.

Fig. 8 In the left image, there is a seam at the corner of the
building. This shows in that the centre character is cut-off. In
the right image, this seam is hidden by a piece of exterior wall
at the corner of the building, so that the seam can never be
seen. Note that this seam appears here because the various
sides of the building are oriented differently and thus have
different furniture planes.

can be done this way. An example of this is a character
reading a newspaper in a chair, turning over the pages
once in a while. Through the use of render to texture [8],
more complex animations could be shown on the furni-
ture plane. This would require rendering separately an
animated 3D character to a texture each frame and using
this texture for the furniture plane.

Finally, note that unlike the interior planes, the fur-
niture plane is not geometrically correct. If the building’s
surface is curved or has a corner, then the furniture plane
will show distortions and even seams (see figure 8). The
stronger the curvature and the further into the interior
the furniture plane is, the stronger the distortion will be.
For this reason, it is not advisable to add furniture planes
to highly curved objects. Around the corners of buildings
the solution is much simpler: avoid transparency in the
exterior texture exactly at the corner. This also makes
sense from an architectural point of view: most buildings
do not have windows that span the building’s corners
anyway.

3 Experiments

To evaluate the effect of Interior Mapping for use in
games and other real-time graphics applications, a test
application has been written. This has been done in C++

using the ogre 3D engine (http://www.ogre3d.org).
All images in this paper were produced using this ap-
plication. The reader can download the test application
from the author’s website (http://interiormapping.
oogst3d.net).

A number of different versions of Interior Mapping
have been implemented, so that they can be compared
visually and regarding performance: with and without
textures, with and without exteriors, with only ceilings
and no walls, and with and without some of the exten-
sions listed below. Through this test application, the dif-
ferent effects were analysed and their performance was
measured, to see which implementation results in the
best ratio between graphical quality and performance
cost. The results are given below.

The other goal of this test application is to compare
Interior Mapping to traditional polygonised buildings.
Interior Mapping was compared to two different settings
here: to the use of no interiors at all by making the win-
dows only reflect, and to the use of polygons to create
the interiors.

The test application measures performance by ob-
serving how many frames can be rendered in five sec-
onds at a resolution of 1024 by 768 pixels. It runs auto-
matically and writes the resulting frame-counts and the
properties of the computer it ran on to a text-file. The
test application was run on a computer with Windows
XP, an amd Athlon 2500+ processor, 1024mb RAM and
an nvidia 6600gt GPU with 128mb video memory. A
problem is that while running a test, Windows might
decide to run some other process in the background. To
keep this from cluttering the test results, the same test
was run five times and any occurrences of oddly high
numbers were not used in the results presented here.
Furthermore, to verify that the test results are repre-
sentative of other GPUs as well, the test was also run
on thirteen other computers with various configurations.
The results of these computers were similar to the main
test computer, although faster GPUs of course achieved
better framerates on all tests. The proportions between
the framerates were roughly the same on all configura-
tions, though. The complete test results of all fourteen
computers can be found on the author’s website.

3.1 Interior Mapping in comparison to polygonised
interiors

It was expected that, if the scene is limited to a few
buildings, Interior Mapping is slower than rendering in-
teriors using actual geometry, because Interior Mapping
uses a fairly complex pixel shader. When the number of
buildings in the scene increases, then the performance
of Interior Mapping should quickly overtake the polygo-
nised interiors. In the test, an apartment building with
31 floors and 6 windows wide and long was used. The
Interior Mapped version of this building is only 10 poly-
gons, while the polygonised version takes 158 polygons.



6 Joost van Dongen

Fig. 9 Comparison between Interior Mapped buildings and
polygonised buildings with interiors. The graph shows the
number of frames rendered in 5 seconds for different num-
bers of buildings in the scene. More frames means a higher
framerate and is thus better.

The Interior Mapped building can be rendered in a single
draw call, while the polygonised version takes five draw
calls. For the polygonised version, floors, ceilings and
walls each use a different tiling texture and can there-
fore not be rendered in a single draw call. After that the
reflection in the windows is first drawn and then the ex-
terior walls. The version of Interior Mapping that was
used here has four different textures for walls, ceilings
and floors, while no lighting is calculated on the interi-
ors.

For the Interior Mapped buildings, z-cull [9] is used.
This is a technique where objects are first rendered only
to the z-buffer and after that are rendered normally. Ren-
dering to the z-buffer can be done very quickly, because
it does not require the calculation of lighting, colour or
complex effects like Interior Mapping. On the second
pass, the z-buffer has already been filled with correct
depths, so only the actually visible pixels are rendered
and there is no overdraw at all. This greatly increases
the performance of Interior Mapping, because overdraw
means that Interior Mapping is performed several times
on the same pixel on the screen. With z-cull, this never
occurs. The actual performance increase of adding z-cull
can vary widely from situation to situation, because it
depends on the scene, the rendering order of the poly-
gons and the camera angle. A test was performed with a
single mesh that contained lots of buildings in a grid and
a camera rotating around this scene. The results of this
test show that in this specific case, the number of frames
rendered in five seconds increases from 881 to 1265 when
z-cull is used, an increase of 44%. This demonstrates that
the performance of Interior Mapping can indeed greatly
benefit from the use of z-cull. Because the framerate of
the polygonised buildings is mainly dependent on the
processing of the polygons, z-cull does not help there at
all. In fact, all polygons need to be processed twice, so
it even results in worse performance.

The graph in figure 9 shows how the number of frames
rendered in five seconds changes when the number of
buildings in the scene increases. As can be seen, the
Interior Mapped buildings quickly overtake the polygo-
nised ones. At 100 buildings, Interior Mapping already
achieves a better framerate. This shows that the perfor-
mance of the polygonised buildings is mainly dependent
on the number of buildings, or in fact on the number
of triangles, while the performance of Interior Mapping
mainly depends on the number of Interior Mapped pix-
els that are actually drawn. The number of triangles is
hardly relevant for Interior Mapping, because the poly-
gon count is so low, that this is a negligible factor. At 500
buildings, Interior Mapping still only requires 5,000 poly-
gons, whereas the polygonised buildings require 79,000
polygons. The reason why the Interior Mapped build-
ings do show a decrease in performance, is because the
higher number of buildings still requires a higher num-
ber of draw calls. A draw call for a single object is an
expensive operation, even if the object contains only 10
triangles and has no visible pixels.

3.2 Performance of the various versions of Interior
Mapping

The previous paragraph showed that from a performance
standpoint, Interior Mapping is better for large cities
than creating interiors using polygons. However, there
are a number of choices that have to be made when im-
plementing Interior Mapping. Should it use only a single
texture for the ceilings and leave the floors and walls
blank, or should it use separate textures for the ceilings,
floors and walls? And what is the effect of turning off
Interior Mapping altogether?

Experiments show that using four separate textures
for the floors, the ceilings and the two wall orientations
results in the same performance as only texturing the
ceilings and calculating lighting for the walls and floor.
The performance of reading the colours of all walls and
ceilings from a single texture was even worse. Appar-
ently, the extra instructions required to calculate which
of the texture coordinates to use to read from the sin-
gle texture are less efficient than just reading from four
different textures. This is in fact an advantage, as using
four different textures allows artists to create much more
graphically interesting rooms. The conclusion is that us-
ing four different textures is not only the best choice
when graphical quality is required, but also when per-
formance is required.

As expected, Interior Mapping is much more expen-
sive than buildings that only have reflecting windows.
A material that has a diffuse texture and reflections in
the windows, which is the basic material for traditional
buildings, renders 5,100 frames in 5 seconds. The same
material with Interior Mapping renders only 999 frames.
However, Interior Mapping adds a lot of detail to the



Interior Mapping 7

buildings and is still easily fast enough to be applied in
real-time applications.

Another important conclusion is that the resolution
of the textures for the interiors does not influence perfor-
mance much. When using four textures with a resolution
of 256 by 256 pixels, 999 frames were rendered in five sec-
onds. When switching to textures of 64 by 64 pixels, 1032
frames were rendered in the same time and at 16 by 16
pixels, 1053 frames were rendered. Decreasing the tex-
ture resolution this way therefore only resulted in a 5%
performance increase, while the detail inside the rooms
significantly decreased.

Another test analysed the performance with differ-
ent numbers of rooms in a single building. The same test
was run several times, while the number of rooms in the
building gradually increased from 1000 to 4,000,000. As
expected, this does not influence the performance at all.
The framerate did not decrease and only showed a neg-
ligible random variation between tests.

4 Extensions

Although Interior Mapping adds a lot of detail to a build-
ing, the interiors are very repetitive. In this section three
extensions are discussed that add more variety to the dif-
ferent rooms.

4.1 Varying lighting per room

In a real city at night, some rooms will have the lights
turned on, while other rooms are in the dark. This effect
can be added to the basic Interior Mapping algorithm
through the use of a 3D noise function. The building has
a variable c between 0 and 1 that stores the probability
that the lights in a room are on. For each room, a 3D
noise-function is used to retrieve a random variable r
between 0 and 1. The room is only lit if r < c. This way
a room is either lit or unlit. If c is slowly increased, then
gradually more and more rooms in the city will become
lit, as can be seen in figure 10.

4.2 Varying textures per room

In the simplest approach, the texture for the interior
walls will contain an image of the wall of a single room.
This image is used for all the rooms, so they all look
exactly the same. However, through the use of a tex-
ture atlas [14], it is possible to have different textures
for each room. A texture atlas is a single texture that
contains several different textures, in this case several
variations to a room texture. For each room, one texture
is randomly chosen from the texture atlas. An example
of using a texture atlas can is shown in figure 11.

Fig. 10 The variable c determines the probability that the
lights in a room are on. By increasing this variable, the inte-
rior of the building goes from completely dark to completely
light.

Fig. 11 A texture atlas containing four different room tex-
tures. Below it the result of randomly choosing one texture
for each wall of each room.

4.3 Varying room sizes

So far, all rooms have been rendered with the exact same
size. Although buildings with such a floorplan do ex-
ist, many buildings feature more variation in the sizes
of their rooms. Unfortunately, if walls can have any po-
sition, it is unclear how to determine the interior wall
closest to a pixel in constant time without a large space
overhead. However, we can still achieve constant time if
we limit how far the walls can be displaced from their
position in the grid. In figure 12 an example is shown
where walls can only be displaced from their original po-
sition by a maximum distance. Because walls can never
be displaced further than the size of a room, only two
walls need to be checked to find the wall closest to a



8 Joost van Dongen

Fig. 12 Walls with varying distances between each other are
possible with Interior Mapping as well.

certain pixel. This way, performance remains high, while
more variation can be added to the rooms.

5 Conclusion

Interior Mapping has great potential for usage in the
coming generation of computer games and other appli-
cations situated in virtual cities. Buildings can gain a
lot of depth by adding interiors to them. Interior Map-
ping requires little extra work from the artists and only
the extra storage space needed for the textures. It is ef-
ficient enough to be applied to games and virtual worlds
for the Xbox 360, Playstation 3 and current and coming
generations of PC games. Interiors made with Interior
Mapping have complexity linear in the number of pixels
on the screen, but constant in the number of buildings,
windows, ceilings, floors and walls. As distant buildings
occupy less pixels on the screen, this generates an auto-
matic form of level of detail that greatly reduces the cost
of rendering a building in the distance, whereas polygo-
nised interiors would require the creation of more low-
polygon versions of the same building to create level of
detail. Interior Mapping is a great addition to any com-
puter game that features large numbers of buildings.

Acknowledgements The author would like to thank the
following people for valuable input and/or running the test
application on their computers: prof. Dr. Mark H. Overmars,
Thomas C. van Dijk, Ralph Rademakers, Erik van Dongen
and the OGRE 3D community.

References

1. Blinn J. F.: Simulation Of Wrinkled Surfaces. ACM SIG-
GRAPH Computer Graphics volume 12, issue 3, 286-
292 (1978)

2. Brown, P.: S3 Texture Compression. NVIDIA Corpora-
tion, November (2001)

3. Carr, N. A., Hall, J. D., Hart, J. C.: The Ray Engine.
ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware, Saarbrucken, Germany, 37-46 (2002)

4. Catmull, E. E.: Computer Display Of Curved Surfaces.
In: IEEE Conference on Computer Graphics, Pattern
Recognition, and Data Structure, Los Angeles, May, 11-17
(1975)

5. Cignoni, P., Di Benedetto, M., Ganovelli, F., Gobbetti,
E., Marton, F., Scopigno, R.: Raycasted Blockmaps For
Large Urban Model Visualisation. Computer Graphics Fo-
rum Volume 26, number 3, 405-413 (2007)

6. Clark, J.: Hierarchical Geometric Models For Visible Sur-
face Algorithms. Communications of the ACM 19(10),
547-554 (1976)

7. Fournier, A.: Normal Distribution Functions And Multi-
ple Surfaces. Graphics Interface ’92 Workshop on Local
Illumination, May, 45-52 (1992)

8. Green, S.: The OpenGL Framebuffer Object Extension.
Game Developers Conference (2005)

9. Kilgariff, E., Fernando, R.: The GeForce 6 Series GPU
Architecture. GPU Gems 2, 471-491 (2005)

10. Kirk, D., et al.: Cg User’s Manual. Nvidia (2004)
11. Maciel, P.W.C., Shirley, P.: Visual Navigation Of Large

Environments Using Textured Clusters. SI3D, 95-102, 211
(1995)

12. Max, N. L.: Shadows For Bump-Mapped Surfaces. Pro-
ceedings of Computer Graphics Tokyo ’86 on Advanced
Computer Graphics, Tokyo, Japan, 145-156 (1986)

13. Muller, P., Wonka, P., Haegler, S., Ulmer, A., van Gool,
L.: Procedural Modeling of Buildings. ACM Transactions
on Graphics Volume 25, Issue 3, 614-623 (2006)

14. NVIDIA: Improve Batching Using Texture Atlases. SDK
Whitepaper, NVIDIA, july (2004)

15. Oliveira, M. M., Bishop, G., McAllister, D.: Relief tex-
ture mapping. Conference On Computer Graphics And
Interactive Techniques, 359-368 (2000)

16. Pharr, M., Green, S.: Ambient Occlusion. In book: GPU
Gems, Addison-Wesley Professional (2004)

17. Wang, X., Tong, X., Lin, S., Hu, S. Guo, B., Shum, H.
Y.: Generalized Displacement Maps. Eurographics Sym-
posium On Rendering, 227-233 (2004)

18. Williams, L.: Pyramidal Parametrics. In Peter Tanner
(ed.), Computer Graphics (SIGGRAPH 83 Conference
Proceedings) Volume 17, 1-11 (1983)

19. Wonka, P., Wimmer, M. Sillion, F. Ribarsky, W.: Instant
Architecture. ACM Transactions On Graphics Volume
22, Issue 3, 669-677 (2003)


